Serveur d'exploration SRAS - Exploration (Accueil)

Index « Keywords » - entrée « Amino Acid Motifs »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Amino Acid Chloromethyl Ketones (metabolism) < Amino Acid Motifs < Amino Acid Motifs (genetics)  Facettes :

List of bibliographic references indexed by Amino Acid Motifs

Number of relevant bibliographic references: 39.
Ident.Authors (with country if any)Title
000C73 (2018) Xuesen Zhao [République populaire de Chine] ; Mohit Sehgal [États-Unis] ; Zhifei Hou [République populaire de Chine] ; Junjun Cheng [États-Unis] ; Sainan Shu [États-Unis] ; Shuo Wu [États-Unis] ; Fang Guo [États-Unis] ; Sylvain J. Le Marchand [États-Unis] ; Hanxin Lin [Canada] ; Jinhong Chang [États-Unis] ; Ju-Tao Guo [République populaire de Chine]Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.
000E56 (2017) Jibin Sadasivan [Inde] ; Manmeet Singh ; Jayasri Das SarmaCytoplasmic tail of coronavirus spike protein has intracellular targeting signals.
000F39 (2016) Gang Ye [République populaire de Chine] ; Feng Deng [République populaire de Chine] ; Zhou Shen [République populaire de Chine] ; Rui Luo [République populaire de Chine] ; Ling Zhao [République populaire de Chine] ; Shaobo Xiao [République populaire de Chine] ; Zhen F. Fu [République populaire de Chine, États-Unis] ; Guiqing Peng [République populaire de Chine]Structural basis for the dimerization and substrate recognition specificity of porcine epidemic diarrhea virus 3C-like protease
000F40 (2016) Jian Lei [Allemagne] ; Rolf Hilgenfeld [Allemagne]Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin.
001063 (2016) Chunmei Li [République populaire de Chine] ; Xin Teng [République populaire de Chine] ; Yifei Qi [République populaire de Chine] ; Bo Tang [République populaire de Chine] ; Hailing Shi [République populaire de Chine] ; Xiaomin Ma [République populaire de Chine] ; Luhua Lai [République populaire de Chine]Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity.
001542 (2014) Rinki Minakshi ; Kartika Padhan [Inde]The YXXΦ motif within the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is crucial for its intracellular transport.
001554 (2014) Adeline Heurich [Allemagne] ; Heike Hofmann-Winkler ; Stefanie Gierer ; Thomas Liepold ; Olaf Jahn ; Stefan PöhlmannTMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.
001698 (2014) Vineet D. Menachery [États-Unis] ; Boyd L. Yount [États-Unis] ; Laurence Josset [États-Unis] ; Lisa E. Gralinski [États-Unis] ; Trevor Scobey [États-Unis] ; Sudhakar Agnihothram [États-Unis] ; Michael G. Katze [États-Unis] ; Ralph S. Baric [États-Unis]Attenuation and Restoration of Severe Acute Respiratory Syndrome Coronavirus Mutant Lacking 2′-O-Methyltransferase Activity
001705 (2014) Dustin B. Ritchie [Canada] ; Jingchyuan Soong ; William K A. Sikkema ; Michael T. WoodsideAnti-frameshifting ligand reduces the conformational plasticity of the SARS virus pseudoknot.
001919 (2013) Ying-Tzu Tseng [Taïwan] ; Chia-Hui Chang ; Shiu-Mei Wang ; Kuo-Jung Huang ; Chin-Tien WangIdentifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly.
001974 (2013) Christopher C. Stobart ; Nicole R. Sexton ; Havisha Munjal ; Xiaotao Lu ; Katrina L. Molland ; Sakshi Tomar ; Andrew D. Mesecar ; Mark R. DenisonChimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity
001C38 (2012) Kanchan Bhardwaj [États-Unis] ; Pinghua Liu ; Julian L. Leibowitz ; C Cheng KaoThe coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein.
001C41 (2012) Aartjan J W. Te Velthuis [Pays-Bas] ; Sjoerd H E. Van Den Worm ; Eric J. SnijderThe SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension.
001D22 (2012) Yutaka Terada [Japon] ; Yuto Shiozaki [Japon] ; Hiroshi Shimoda [Japon] ; Hassan Youssef Abdel Hamid Mahmoud [Japon] ; Keita Noguchi [Japon] ; Yumiko Nagao [Japon] ; Masayuki Shimojima [Japon] ; Hiroyuki Iwata [Japon] ; Takuya Mizuno [Japon] ; Masaru Okuda [Japon] ; Masahiro Morimoto [Japon] ; Toshiharu Hayashi [Japon] ; Yoshikazu Tanaka [Japon] ; Masami Mochizuki [Japon] ; Ken Maeda [Japon]Feline infectious peritonitis virus with a large deletion in the 5'-terminal region of the spike gene retains its virulence for cats.
001D33 (2012) Kazuya Shirato ; Miyuki Kawase ; Oshi Watanabe [Japon] ; Chika Hirokawa [Japon] ; Shutoku Matsuyama ; Hidekazu Nishimura [Japon] ; Fumihiro Taguchi [Japon]Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein.
001D68 (2012) Nishant Thakur [Inde] ; Abid Qureshi ; Manoj KumarAVPpred: collection and prediction of highly effective antiviral peptides.
002102 (2011) Jennifer R. Cohen [États-Unis] ; Lisa D. Lin ; Carolyn E. MachamerIdentification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.
002589 (2010) Yanchen Zhou [États-Unis] ; Kai Lu ; Susanne Pfefferle ; Stephanie Bertram ; Ilona Glowacka ; Christian Drosten ; Stefan Pöhlmann ; Graham SimmonsA single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms.
002A48 (2009) Yoshiyuki Yamada ; Ding Xiang LiuProteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells.
003093 (2008) Yanning Lu [Singapour] ; Tuan Ling Neo ; Ding Xiang Liu ; James P. TamImportance of SARS-CoV spike protein Trp-rich region in viral infectivity.
003563 (2007) Jae-Hwan You [Royaume-Uni] ; Mark L. Reed ; Julian A. HiscoxTrafficking motifs in the SARS-coronavirus nucleocapsid protein.
003717 (2007) Jason Netland [États-Unis] ; Debra Ferraro ; Lecia Pewe ; Heidi Olivares ; Thomas Gallagher ; Stanley PerlmanEnhancement of murine coronavirus replication by severe acute respiratory syndrome coronavirus protein 6 requires the N-terminal hydrophobic region but not C-terminal sorting motifs.
003758 (2007) Emmanuel Fenouillet [France] ; Rym Barbouche ; Ian M. JonesCell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus.
003795 (2007) Kulbhushan Sharma [Singapour] ; Milan Surjit [Singapour] ; Namita Satija [Singapour] ; Boping Liu [Singapour] ; Vincent T. K. Chow [Singapour] ; Sunil K. Lal [Singapour, Inde]The 3a Accessory Protein of SARS Coronavirus Specifically Interacts with the 5‘UTR of Its Genomic RNA, Using a Unique 75 Amino Acid Interaction Domain†
003B16 (2007) Corrin E. Mcbride [États-Unis] ; JIE LI [États-Unis] ; Carolyn E. Machamer [États-Unis]The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein
003B69 (2007) Jeroen Corver [Pays-Bas] ; Rene Broer [Pays-Bas] ; Puck Van Kasteren [Pays-Bas] ; Willy Spaan [Pays-Bas]GxxxG motif of severe acute respiratory syndrome coronavirus spike glycoprotein transmembrane domain is not involved in trimerization and is not important for entry
003C89 (2006) Andrew Pekosz [États-Unis] ; Scott R. Schaecher ; Michael S. Diamond ; Daved H. Fremont ; Amy C. Sims ; Ralph S. BaricStructure, expression, and intracellular localization of the SARS-CoV accessory proteins 7a and 7b.
003E40 (2006) Fang Li [États-Unis] ; Wenhui Li ; Michael Farzan ; Stephen C. HarrisonInteractions between SARS coronavirus and its receptor.
004102 (2006) Eyal Arbely [Israël] ; Zvi Granot [Israël] ; Itamar Kass [Israël] ; Joseph Orly [Israël] ; Isaiah T. Arkin [Israël]A Trimerizing GxxxG Motif Is Uniquely Inserted in the Severe Acute Respiratory Syndrome (SARS) Coronavirus Spike Protein Transmembrane Domain†
004647 (2005) Haibin Luo [République populaire de Chine] ; Fei Ye ; Kaixian Chen ; Xu Shen ; Hualiang JiangSR-rich motif plays a pivotal role in recombinant SARS coronavirus nucleocapsid protein multimerization.
005014 (2004) Geoff Sutton [Royaume-Uni] ; Elizabeth Fry ; Lester Carter ; Sarah Sainsbury ; Tom Walter ; Joanne Nettleship ; Nick Berrow ; Ray Owens ; Robert Gilbert ; Andrew Davidson ; Stuart Siddell ; Leo L M. Poon ; Jonathan Diprose ; David Alderton ; Martin Walsh ; Jonathan M. Grimes ; David I. StuartThe nsp9 replicase protein of SARS-coronavirus, structure and functional insights.
005049 (2004) Yan Li [République populaire de Chine] ; Chunqing Luo ; Wei Li ; Zhao Xu ; Changqing Zeng ; Shenli Bi ; Jun Yu ; Jun Wu ; Huanming YangStructure-based preliminary analysis of immunity and virulence of SARS coronavirus.
005058 (2004) Yanhui Xu [République populaire de Chine] ; Yiwei Liu ; Zhiyong Lou ; Lan Qin ; Xu Li ; Zhihong Bai ; Hai Pang ; Po Tien ; George F. Gao ; Zihe RaoStructural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core.
005276 (2004) Erik Lontok [États-Unis] ; Emily Corse ; Carolyn E. MachamerIntracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.
005315 (2004) Arezki Azzi [Canada] ; Sheng-Xiang LinHuman SARS-coronavirus RNA-dependent RNA polymerase: activity determinants and nucleoside analogue inhibitors.
005399 (2004) Yanhui Xu [République populaire de Chine] ; Zhiyong Lou ; Yiwei Liu ; Hai Pang ; Po Tien ; George F. Gao ; Zihe RaoCrystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core.
005E96 (2003) Quan-Cai Cai [République populaire de Chine] ; Qing-Wu Jiang ; Gen-Ming Zhao ; Qiang Guo ; Guang-Wen Cao ; Teng ChenPutative caveolin-binding sites in SARS-CoV proteins.
005F28 (2003) Xiang Xu [République populaire de Chine] ; Yunqing Liu ; Susan Weiss ; Eddy Arnold ; Stefan G. Sarafianos ; Jianping DingMolecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design.
006011 (2003) Jianfei Hu [République populaire de Chine] ; Jing Wang [République populaire de Chine] ; Jing Xu [République populaire de Chine] ; Wei Li [République populaire de Chine] ; Yujun Han [République populaire de Chine] ; Yan Li [République populaire de Chine] ; Jia Ji [République populaire de Chine] ; Jia Ye [République populaire de Chine] ; Zhao Xu [République populaire de Chine] ; Zizhang Zhang [République populaire de Chine] ; Wei Wei [République populaire de Chine] ; Songgang Li [République populaire de Chine] ; Jun Wang [République populaire de Chine] ; Jian Wang [République populaire de Chine] ; Jun Yu [République populaire de Chine] ; Huanming Yang [République populaire de Chine]Evolution and Variation of the SARS-CoV Genome

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/KwdEn.i -k "Amino Acid Motifs" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/KwdEn.i  \
                -Sk "Amino Acid Motifs" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    indexItem
   |index=    KwdEn.i
   |clé=    Amino Acid Motifs
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021